

Cross-Platform Software Developer Expertise Learning

Norbert Eke, M.CS. Candidate April 21st, 2020

Thesis Supervisor: Dr. Olga Baysal

Table of Contents

- Motivation
- Research Questions
- Related Work
- Methodology
- Results
- Implications
- Threats to Validity
- Future Work
- Contributions

Motivation

- Canada's Capital University
 - Recruiters have a hard time finding the right candidates
 - Difficult to determine the actual expertise of developers from **resumes**
 - Analyzing collaborative platforms (such as GitHub and Stack Overflow)
 - User behaviour is a rich source of data about the software development process
 - Excellent source of data for identifying the right candidate for a job
 - Developer interest and expertise can be inferred from data

• Objectives:

- Investigate if users maintain similar expertise profiles across multiple collaborative platforms
- **Develop data-driven techniques** that extract developer expertise from GitHub and Stack Overflow ³

Research Questions

Canada's Capital University

RQ1: Expertise Extraction How can we extract the major expertise areas of Stack Overflow and GitHub users?

How do expertise trends compare on Stack Overflow and GitHub?

RQ2: Crossplatform Expertise

How similar are developer expertise profiles in two different collaborator platforms, Stack Overflow and GitHub?

RQ3: Transferable Knowledge

What knowledge is transferable from one platform to another?

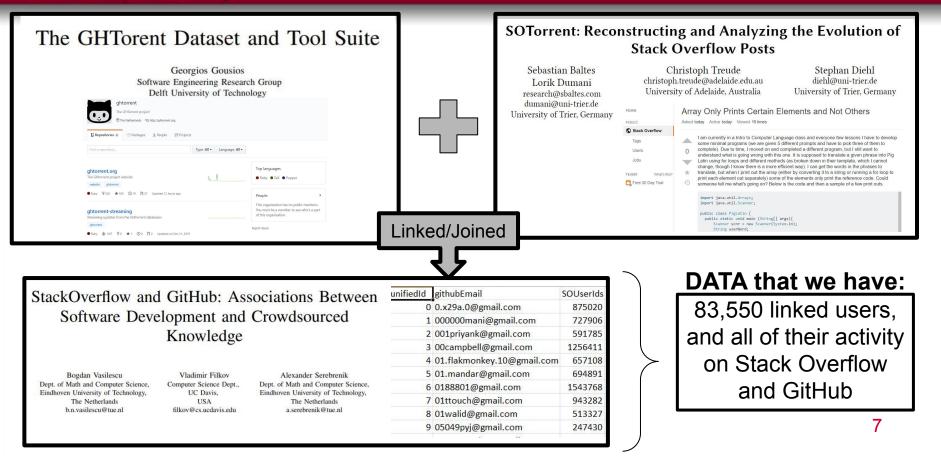
RQ4: Expertise Evolution How much does developer expertise evolve on Stack Overflow and GitHub?

Related Work Highlights

- Canada's Capital University
- Vasilescu et al. (2013)
 - One of the first researchers to explore the interaction between Stack Overflow and GitHub activities
- Tian et al. (2013)
 - Formulated the task of finding expert developers in open source software communities
- Greene and Fischer (2016)
 - Created a tool which extracts, explores and visualizes technical skills of GitHub users
- Baltes and Diehl (2018)
 - Created the first comprehensive theory of software development expertise
- Treude and Wagner (2019)
 - Studied the characteristics of GitHub and Stack Overflow text corpora

- Data Acquisition
- Data Cleaning & Aggregation
- Expertise Study
- Research Roadmap
- Algorithm Design
- Data Analysis

Data Acquisition



Data Cleaning & Aggregation

Canada's Capital University

Two stage data cleaning process:

- 1. User level text pre-processing:
- Removal of html links, symbols
- Removal of stop-words, tags
- Tokenization, then remove numbers, but not words that contain numbers
- 2. Corpus level text pre-processing:
 - Detect frequent phrases
 - Strip punctuation and symbols
 - Remove rare and very common tokens

Building SO User Profiles	Building GH User Profiles		
 Badge names Profile page's about me 	 Project Name, Description, Labels, Languages Used 		
Questions	Commit		
• Answers	• Comments		
• Post Titles, Tags	• Code review (Pull Request)		
• Comments	(Pull Request) Comments		

Expertise Study

Canada's Capital University

- Overall goal: obtain expertise ground truth
- Sampled 100 random users active on both Stack Overflow and GitHub
- Created 10 different Google
 Forms, each containing 10 Stack
 Overflow and GitHub user profile
 links
- Evaluated our model outputs against human annotations using cosine similarity scores between the two bag-of-words

GH user's expertise - Bin 1

X :

Enter 20 comma-separated words for describing each user's expertise. Your answers needs to come from evaluating a user's full activity (i.e. every publicly available data that you can see and click-through) on Github.

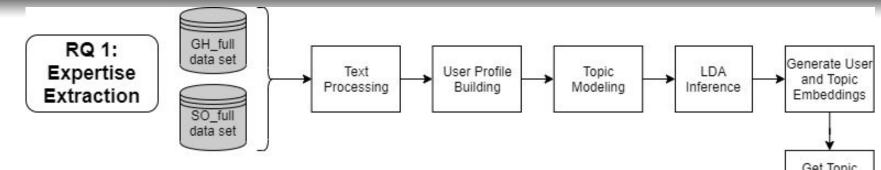
Sample answer for a fictional user:

"pytorch, CNN, RNN, auto-encoders, Keras, git, tensorflow, python, java, C#, web_dev, machine_learning, random_forest, SVM, nlp, Java_streams, distributed_computing, parallel_computing, R, statistics, visualization"

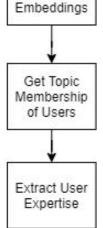
Resulting Data

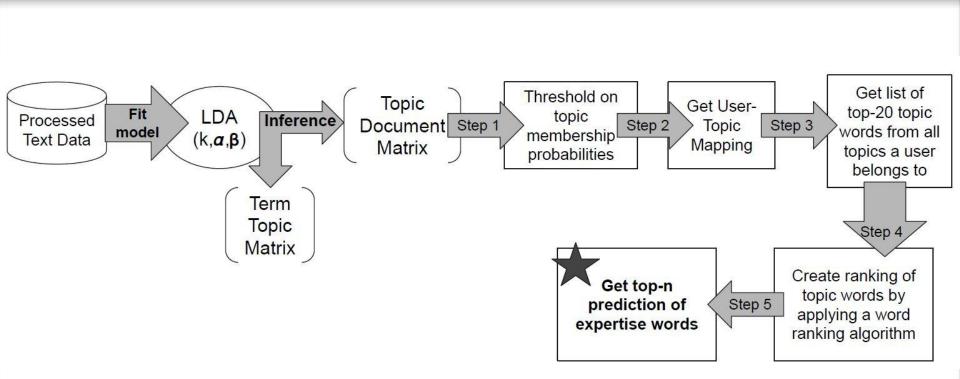
1	A	B	С	D	E	G	Н	1	J	K
1	sample_ID	profile_url				Processed_Annotator_1	Processed	Annotato	r_2	
2	0	https://stac	koverflow	.com/user	s/1081	java;angularjs;jpa;android;localization;i	java;javaso	ript;object	;oriented;s	ql;jquery;as
3	1	https://stac	koverflow	.com/user	s/1278	unix;linux;tex;latex;server;windows;ubu	git;rxjs;cry	ptography;	mercurial;c	pen;source;
4	2	https://stac	koverflow	.com/user	s/1026	haskell;monads;functional_programmin	haskell;fur	ctional_pr	ogramming	;monad;isor
5	3	https://stac	koverflow	.com/user	s/2097	c#;dot_net;entity_framework;database	c#;dot_net	;mvc;aspd	ot_net;enti	ty;framewo
6	4	https://stac	koverflow	.com/user	s/5628	reactjs;enzyme;asynchronous;python;ja	react;javas	cript;jest;p	ython;mult	iparadigm;u
7	5	https://stac	koverflow	.com/user	s/3698	ssl;python;openssl;nodejs;pips;webserv	ssl;cryptog	raphic;pyt	non;hashing	;openssl;to
8	6	https://stac	koverflow	.com/user	s/9455	azure;python;javascript;dropbox;c#;win	microsoft;	azure;pyth	on;javascri	ot;dropbox;
9	7	https://stac	koverflow	.com/user	s/1024	python; javascript; jquery; html; css; nump	numpy;pyt	hon;javasc	ript;html;cs	s;jquery;php
10	8	https://stac	koverflow	.com/user	s/1270	r;dataframe;reshape;aggregate;string;li	r;data;fran	ne;aggrega	te;datatabl	es;reshape;
11	9	https://stac	koverflow	.com/user	s/4568	nodejs;docker;javascript;jquery;ajax;htr	java;javaso	ript;object	;oriented;s	ql;jquery;an
12	10	https://stac	koverflow	.com/user	s/2981	python;django;programming;jquery;asp	fullstack;w	eb;web_de	esign;web_	developmen
13	11	https://stac	koverflow	.com/user	s/8041	clojure; iphone; ios; oauth; lisp; multithrea	clojure;jvm	;java;ipho	ne;lisp;mut	ithreading;ic
14	12	https://stac	koverflow	.com/user	s/2052	java;c;bash;c++;shell;linux;memory;poir	debugging;	testing;ver	ification;va	lidation;sof
15	13	https://stac	koverflow	.com/user	s/5411	computer;science;software_engineering	python;ha	skell;object	;oriented;p	orogramming
16	14	https://stac	koverflow	.com/user	s/1495	computer;science;software engineering	java;sql;m	ongodb;jav	ascript;jvm	;database;se

Algorithm Design

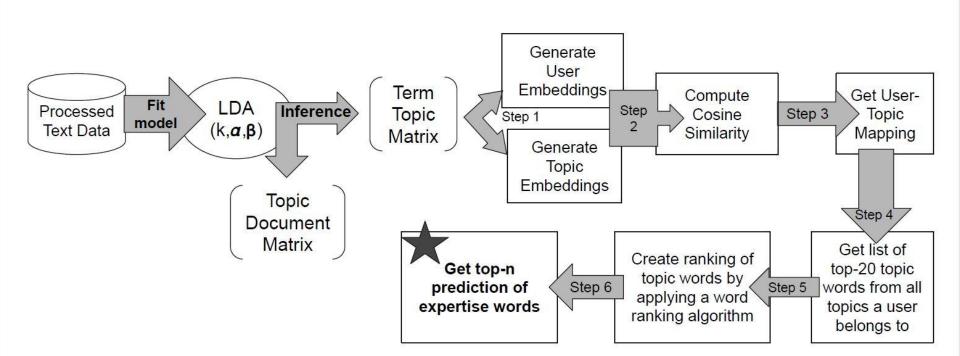


- Developed 3 novel techniques:
 - Topic Distribution based Expertise Extraction (T1)
 - LDA based Expertise Extraction (T2)
 - Word2Vec based Expertise Extraction (**T3**)
- T2 and T3 have two variations each:
 - LDA_AVG, LDA_MAX, and W2V_AVG, W2V_MAX
- Performed 2 experiments: (1 & 2) on 2 different data sets (A & B)
 - Experiment 1A, 2A on GitHub & Experiment 1B, 2B on Stack Overflow 10

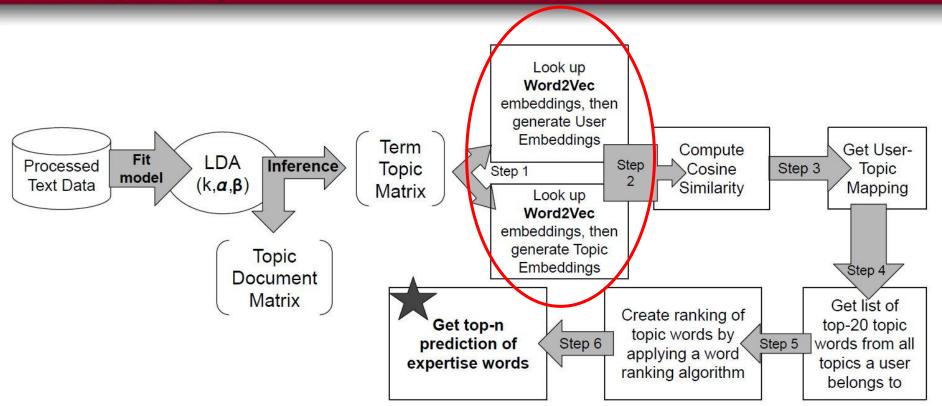




LDA Based Expertise Extraction



Carleton Word2Vec Based Expertise Extraction



Results

RQ1 Results

Table 4: Results of	Experiment	1A - Expert	ise Extraction	from	GitHub	Data.
---------------------	------------	-------------	----------------	------	--------	-------

Top 3 Results	Metrics	TDistr	LDA_AVG	LDA_MAX	W2V_AVG	W2V_MAX	Baseline
	Cosine Sim.	0.6690	0.7187	0.7357	0.7998	0.7317	0.5962
1	Jaccard Sim.	0.0658	0.0751	0.1040	0.0765	0.1049	0.0286
	BLEU Score	0.1197	0.1340	0.1767	0.1368	0.1782	0.0540
2	Cosine Sim.	0.6689	0.7183	0.7351	0.7959	0.7316	0.5962
	Jaccard Sim.	0.0658	0.0750	0.1037	0.0818	0.1049	0.0286
	BLEU Score	0.1197	0.1338	0.1762	0.1452	0.1782	0.0540
	Cosine Sim.	0.6683	0.7183	0.7351	0.7959	0.7316	0.5962
3	Jaccard Sim.	0.0652	0.0750	0.1037	0.0818	0.1049	0.0286
	BLEU Score	0.1186	0.1338	0.1762	0.1452	0.1782	0.0540

Table 5: Example of Cosine Similarity Scores between Term-Pairs.

Term 1	Term 2	Cosine Similarity	Term 1	Term 2	Cosine Similarity
php	python	0.2529	html	javascript	0.6024
java	python	0.3929	ajax	jquery	0.6315
analysis	visualization	0.4524	sklearn	tensorflow	0.6858
nodejs	reactjs	0.4909	bagging	random-forest	0.7251
java	jdk	0.5517	mysql	postgresql	0.7997
xml	json	0.5866	keras	tensorflow	0.8391

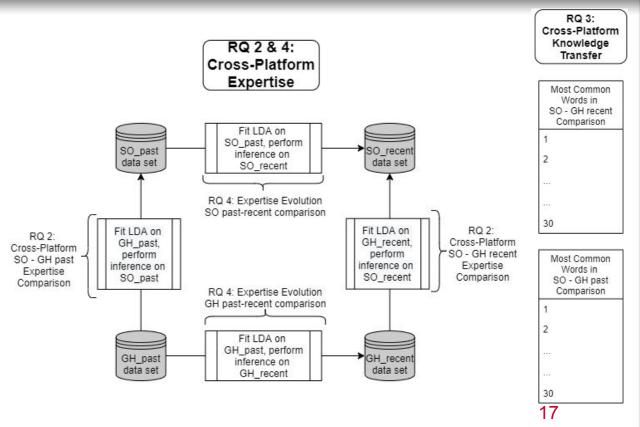
RQ1:

Expertise Extraction How can we extract the major expertise areas of Stack Overflow and GitHub users? How do expertise trends compare on Stack Overflow and GitHub?

- W2V_AVG model performs best for 3 out of 4 experiments
- Expertise trend similarities:
 - Both include a few popular programming language related topics, and both are dominated by web development related skills
- Expertise trend differences:
 - GitHub expertise areas are few, and more general
 - Stack Overflow expertise areas are more specific and numerous

RQ 2-4 Research Roadmap

- Fitted LDA models on 4 text corpora
- Evaluation metric used: Topic Coherence
- Performed hyperparameter optimization
- When comparing two text corpora, we fitted LDA on larger corpus, performed inference on the other corpus



Answer to RQ 2

Canada's Capital University

How similar are developer expertise profiles in two different collaborator platforms, Stack Overflow and GitHub?

- **64% of the population has no overlap** in the GH-recent & SO-recent text corpora comparison
- 67% of the population has no overlap in the GH-past & SO-past text corpora comparison
- These results suggest that **developers build different expertise profiles** on GitHub and Stack Overflow.

Answer to RQ 3

Canada's Capital University

What knowledge is transferable from one platform to another?

Common expertise terms suggest that **source code**, **version control and web development** related skills are most transferable knowledge.

- For the comparison of **GH past-recent** text corpora most of the analyzed **GitHub** population **has largely changed their expertise** over time.
- For the comparison of SO past-recent text corpora most of the analyzed Stack Overflow population did not or only slightly changed their expertise over time.

Carleton Implications: Our Recommendations

Canada's Capital University

- Recruiters
 - For hiring use **expertise profiles** obtained via **data-driven** approaches
- Project Managers
 - Consider integrating an **expertise based task assignment system**

• Stack Overflow and GitHub Users

 Consider using multiple collaborative platforms to gain more knowledge and become an expert

• Researchers

Consider combining state-of-the-art algorithms from multiple areas of computer science/statistics in their research work
 21

Threats to Validity

Canada's Capital University

There are several threats, but I will highlight the key ones:

- Data pre-processing
 - The **blend of natural text and source code** in Stack Overflow posts caused some challenges to the text pre-processing routine
 - Not all code elements are cleaned up and filtered out properly.
- Data quality
 - The SO-recent data set lacks active users
 - Lack of user activity data could lead to misleading topic trends in LDA
 - This is the **nature of the data set**, thus we could not mitigate this issue

- Separation of natural text from source code elements
- Alternatives for better user and topic vector representation:
 - Mixing Dirichlet Topic Models and Word Embeddings (LDA2Vec)
 - Topic Modeling in Embedding Spaces (ETM)
- Use of **author-topic models** to model user activities
- Try to **predict, summarize or classify** a user's expertise area

- 1. **Development of three novel techniques** to extract developer expertise topics from Stack Overflow and GitHub
- 2. Analysis of developer expertise trends on Stack Overflow and GitHub
- 3. Comparison of developer expertise across two collaborative platforms
- 4. Empirical evidence about knowledge transfer between two collaborative platforms
- 5. Analysis of **developer expertise evolution trends** from two collaborative platforms
- 6. Collection of developer expertise ground truth data set
- Development of four new data sets by aggregating Stack Overflow and GitHub data
 24

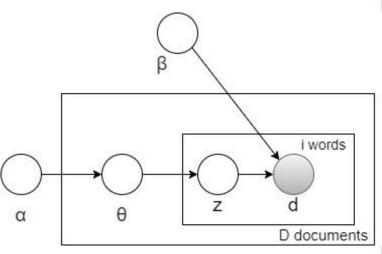
Appendix

Topic Modeling - LDA

Canada's Capital University

LDA assumes that it receives a collection of D documents, each of length L_i as input. Being a generative probabilistic model, LDA has a generative process, which can be described in the following steps:

- 1. For each topic k in $\{1, ..., K\}$ draw a word distribution $\phi_k \sim Dir(\beta)$
- 2. For each document d in $\{1, ..., D\}$ draw a topic distribution $\phi_d \sim Dir(\alpha)$
- 3. For each word *i* of document *d* draw a topic distribution $z_{d,i} \sim Multinomial(\phi_d)$ and a word distribution $w_{d,i} \sim Multinomial(\phi_{z_{d,i}})$



LDA - Gibbs Sampling

Canada's Capital University

Algorithm 1 LDA Training Process using Gibbs Sampling.

Require: D documents, K number topics, IterNum - Maximum number of Gibbs Sampling iterations

1: for each document d do

2: for each word i in document d do

3: Randomly assign word i to one of the K topics.

4: end for

5: end for

6:

7: # Perform *IterNum* iterations of Gibbs sampling

8: for *index* in 1, ..., *IterNum* do

9: for each document d do

10: for each word i in document d do

11: for each topic t in 1, ..., K topics do

12: Compute full conditional probability P from Equation 1

13: Reassign word i to topic t with probability P

14: # In the LDA model P is the probability that topic t generated word i

15: end for

16: end for

17: end for

18: end for

Stack Overflow User Profiles

Canada's Capital University

Table 2: Stack Overflow user profile extraction.

Attribute Name	Attribute(s)	Description
Badges	Badges.Name	Concatenation of list of badges obtained by the user
About Me	Users.AboutMe	Stack Overflow user profile's about me description
Post Answer	Posts.Body, AcceptedAn- swerId	The user's each individual answer concate- nated with the question it is related to
Post Question	Posts.Body	The user's each individual question concate- nated with the accepted answer it is related to
Title and Tags for Questions	Posts.Tags, Posts.Title	Concatenation of post tags and title for each question that the user asked
Title and Tags for Answers	Posts.Title, Posts.Tags	Concatenation of post tags and title for each answer that the user provided
Comments	Comments.Text Posts.Body, Posts.Title	Concatenation of the user's each individual comment and the post (question or answer) it is related to

GitHub User Profiles

Canada's Capital University

Table 3: GitHub user profile extraction.

Attribute Name	Attribute(s)	Description		
Project Name, Description and Metadata	Projects.[name, description, language], Repo- Labels.name	Description of each user's project to- gether with the repository's name, de- scription, languages used, repository labels it contains.		
Commit- Comments	Commit- Comments.body	List of user's commit comments.		
Code-review Comments	Pull-Request- Comments.body	List of user's code review (pull request) comments.		

Hyper-parameter Optimization

- For α hyper-parameter we learnt an asymmetric prior from the data for both.
- For β hyper-parameter we defined a parameter search space of [0.001, 1], then performed a hyper-parameter optimization against this search space
- For **k**, number of topics, we defined a parameter search space of [3, 100], then performed a hyper-parameter optimization against this search space, with the evaluation metric selected (or task-based evaluation)

Topic Coherence Measures

Canada's Capital University

Roder et al. proposed a coherence framework that consists of four steps:

- 1. segmentation of word-pairs
- 2. estimation of word probabilities computation of confirmation measures
- which test how strong is the coherence between any two word pairs
- 4. Aggregating "confirmation measures" to form a single coherence score.
 - Four promising topic coherence metrics emerge as the metrics that are most correlated with human judgements and interpretability

- UCI is a metric based on Point-wise Mutual Information (PMI), and it estimates word probabilities based on word co-occurrences. UCI is also known for having the largest correlation with human annotations.
- UMASS is an asymmetric "confirmation" metric between top word pairs, and it takes into consideration the ordering of topic words in a topic.
- *NPMI* is a metric based on normalized Point-wise Mutual Information (PMI), and it works by generating context vectors for each topic word in a topic.
- C_V is the best performing coherence metric, being a hybrid metric between indirect cosine similarity measures, the NPMI metric and a boolean sliding

Carleton Topic Distr. Based Expertise Extraction

ounded o capital onitionity		
	Algorithm 2 Topic Distribution Based Expertise Extraction.	
	Require: LDA: Topic Model, threshold: Probability Threshold	
	1: Get Topic-Document Matrix M from fitted LDA topic model	
	2: User-Topic Mapping = { }	
	3: Expertise-Predictions = $\{ \}$	
	4:	
	5: // Create User-Topic Mapping of each user	
	6: for all users $user_ID$ in the data set do	
	7: Get user profile document d of user $user_ID$	
	8: Get topic distribution TD of document d from matrix M	
	9: listOfTopics = $[]$	
	10: for all topics t with non-zero probability in TD do	
	11: if probability of topic $t \ge threshold$ then	
	12: Add topic t to listOfTopics	
	13: end if	
	14: end for	
	15: User-Topic Mapping $[d_i]$ = listOfTopics	
	16:	
	17: // Extract expertise for each user	
	18: listOfWords = $[]$	
	19: for all topic t in User-Topic Mapping $[user_ID]$ do	
	20: $TW = \text{Get top-20 topic words that describe topic } t$	
	21: Add topic words TW to listOfWords	
	22: end for	
	23: Apply a word ranking algorithm to listOfWords	
	24: Expertise-Predictions $[user_{ID}] = $ sorted listOfWords	
	25: end for	32
	26: return Expertise-Predictions	

Algorithm 5 Expertise Extraction using LDA Based User and Topic Embeddings.	
Require: D: User Profile Documents, LDA: Topic Model, threshold: Cosine Simi-	
larity Threshold	
1: Get Term-Topic Matrix <i>M</i> learned during inference of fitted <i>LDA</i> topic model	
2: User-Topic Mapping = $\{ \}$	
3: Expertise-Predictions = $\{ \}$	
4: Run LDA based User Embedding Generation to get $User Emb$ matrix	
5: Run LDA based Topic Embedding Generation to get <i>TopicEmb</i> matrix	
6:	
7: for each user embedding U in $UserEmb$ do	
8: $listOfTopics = []$	
9: user_to_topic_sim = []	
10: for each topic embedding T in $TopicEmb$ do	
11: Computer cosine similarity SIM between user embedding U and topic em-	
bedding T	
12: Add SIM to user_to_topic_sim	
13: end for	
14:	
15: Get list of topics LT associated with non-zero cosine similarities in	
user.to_topic_sim	
16: for topic t in LT do	
17: if user_to_topic_sim[t] \geq threshold then	
18: Add topic t to listOfTopics	
19: end if	
20: end for	
21: Get $User_ID$ associated with user embedding U	
22: User-Topic Mapping[$User_ID$] = listOfTopics	
23:	
24: // Extract expertise for each user	
25: $\operatorname{listOfWords} = []$	
26: for all topic t in User-Topic Mapping [$user_ID$] do	
27: $TW = \text{Get top-20 topic words that describe topic } t$	
28: Add topic words TW to listOfWords	
29: end for	
30: Apply a word ranking algorithm to listOfWords	
31: Expertise-Predictions $[user_ID] = $ sorted listOfWords	22
32: end for	33
33: return Expertise-Predictions	

LDA Based User Embeddings

Canada's Capital University

Algorithm 3 LDA Based User Embedding Generation.

Require: M: Term-Topic Matrix, D: User Profile Documents

1: listOfEmbeddings = []

- 2: for all users $user_ID$ in the data set do
- 3: Get user profile document d for user $user_ID$ from D
- 4: Get unique set words WordSet in document d

```
5: listOfVectors = []
```

- 6:
- 7: for each word w in WordSet do
- 8: Get $1 \times k$ vector v of latent scores for word w from matrix M
- 9: Add vector v to listOfVectors
- 10: end for
- 11: Convert list Of
Vectors to matrix LV with dimensions $n \times k$; n = length(WordSet)
- 12: Perform column-wise max-pooling or average-pooling to reduce matrix LV to a user embedding vector emb, dimension $1 \times k$
- 13: Add user embedding vector *emb* to listOfEmbeddings
- 14: end for
- 15: Convert list OfEmbeddings to matrix E with dimensions $u\times k;$ where u= number of users in the data set
- 16: return Matrix E

LDA Based Topic Embeddings

Canada's Capital University

Algorithm 4 LDA Based Topic Embedding Generation. **Require:** LDA: Topic Model, M: Term-Topic Matrix 1: listOfEmbeddings = []2: for each topic T_i in LDA fitted model do Get top-20 topic words TW describing topic T_i 3: listOfVectors = []4: 5: for each word w in TW do 6: Get $1 \times k$ vector v of latent scores for word w from matrix M 7: Add vector v to listOfVectors 8: 9: end for Convert listOfVectors to matrix LV with dimensions $n \times k$; where n = 20, k =10: number of topics in LDA model Perform column-wise max-pooling or average-pooling to reduce matrix LV to 11: a topic embedding vector *emb*, dimension $1 \times k$ Add topic embedding vector *emb* to listOfEmbeddings 12: 13: end for 14: Convert listOfEmbeddings to matrix E with dimensions $k \times k$ 15: return Matrix E

Carleton Word2Vec Based Expertise Extraction

Canada's Capital University

Algorithm 8 Expertise Extraction Using Pre-trained Word2Vec Based User and Topic Embeddings.

- Require: D: User Profile Documents, LDA: Topic Model, threshold: Cosine Similarity Threshold, Word2Vec: Pre-trained Model
- 1: Get Term-Topic Matrix M learned during inference of fitted LDA topic model
- 2: User-Topic Mapping = $\{ \}$
- 3: Expertise-Predictions = $\{ \}$
- 4: Run Word2Vec based Üser Embedding Generation to get UserEmb matrix
- 5: Run Word2Vec based Topic Embedding Generation to get *TopicEmb* matrix
- 6:
- 7: for each user embedding U in UserEmb do
- 8: listOfTopics = []
- 9: $user_to_topic_sim = []$
- 10: for each topic embedding T in TopicEmb do
- 11: Computer cosine similarity SIM between user embedding U and topic embedding T
- 12: Add SIM to user_to_topic_sim
- 13: end for
- 14:
- Get list of topics LT associated with non-zero cosine similarities in user_to_topic_sim
- 16: for topic t in LT do
- 17: if user_to_topic_sim[t] \geq threshold then
- 18: Add topic t to listOfTopics
- 19: end if
- 20: end for
- 21: Get $User_ID$ associated with user embedding U
- 22: User-Topic Mapping[$User_ID$] = listOfTopics
- 23:
- 24: // Extract expertise for each user
- 25: listOfWords = []
- 26: for all topic t in User-Topic Mapping[$user_ID$] do
- 27: TW = Get top-20 topic words that describe topic t
- 28: Add topic words TW to listOfWords
- 29: end for
- 30: Apply a word ranking algorithm to listOfWords
- 31: Expertise-Predictions $[user_ID] =$ sorted listOfWords
- 32: end for
- 33: return Expertise-Predictions

Carleton Word2Vec Based User Embeddings

Canada's Capital University

Algorithm 6 Pre-trained Word2Vec Based User Embedding Generation.

Require: D: User Profile Documents, word2vec: Pre-trained Model

1: listOfEmbeddings = []

2: for all users $user_ID$ in the data set do

- 3: Get user profile document d for user $user_ID$ from D
- 4: Get unique set words WordSet in document d
- 5: listOfVectors = []
- 6:
- 7: for each word w in WordSet do
- 8: Look up vector representation v of word w in pre-trained Word2Vecmodel
- 9: Add vector v to listOfVectors
- 10: end for
- 11: Convert listOfVectors to matrix LV with dimensions $n \times d$; n = length(WordSet), d = dimensionality of Word2Vec model
- 12: Perform column-wise max-pooling or average-pooling to reduce matrix LV to a user embedding vector emb, dimension $1 \times d$
- 13: Add user embedding vector *emb* to listOfEmbeddings
- 14: end for
- 15: Convert listOfEmbeddings to matrix E with dimensions $u \times d$; where u = number of users in the data set
- 16: return Matrix E

Carleton Word2Vec Based Topic Embeddings

Canada's Capital University

Algorithm 7 Pre-trained Word2Vec Based Topic Embedding Generation.

- Require: LDA: Topic Model, Word2Vec: Pre-trained Model
- 1: listOfEmbeddings = []
- 2: for each topic T_i in LDA fitted model do
- 3: Get top-20 topic words TW describing topic T_i
- 4: listOfVectors = []
- 5:
- 6: for each word w in TW do
- 7: Look up vector representation v of word w in pre-trained Word2Vecmodel
- 8: Add vector v to listOfVectors
- 9: end for
- 10: Convert listOfVectors to matrix LV with dimensions $n \times d$; where n = 20, d =dimensionality of Word2Vec model
- 11: Perform column-wise max-pooling or average-pooling to reduce matrix LV to a topic embedding vector emb, dimension $1 \times d$
- 12: Add topic embedding vector emb to listOfEmbeddings
- 13: end for
- 14: Convert list Of
Embeddings to matrix E with dimensions
 $k\times d,\ k=$ number of topics in LDA model
- 15: return Matrix E

RQ1 - Experiment 1B Results

Canada's Capital University

Table 7: Results of Experiment 1B - Expertise Extraction from Stack Overflow Data.

Top 3 Results	Metrics	TDistr	LDA_AVG	LDA_MAX	W2V_AVG	W2V_MAX	Baseline
1	Cosine Sim.	0.5044	0.5582	0.5837	0.5607	0.5820	0.3721
	Jaccard Sim.	0.0160	0.0406	0.0435	0.0320	0.0556	0.0104
	BLEU Score	0.0313	0.0770	0.0823	0.0612	0.1041	0.0199
	Cosine Sim.	0.4997	0.5560	0.5717	0.5574	0.5746	0.3721
2	Jaccard Sim.	0.0295	0.0747	0.0814	0.0404	0.0784	0.0104
	BLEU Score	0.0560	0.1366	0.1471	0.0768	0.1424	0.0199
	Cosine Sim.	0.4755	0.5409	0.5676	0.5537	0.5736	0.3721
3	Jaccard Sim.	0.0127	0.0754	0.0821	0.0718	0.0305	0.0104
	BLEU Score	0.0247	0.1366	0.1478	0.1312	0.0584	0.0199

Table 5: Example of Cosine Similarity Scores between Term-Pairs.

Term 1	Term 2	Cosine Similarity	Term 1	Term 2	Cosine Similarity
php	python	0.2529	html	javascript	0.6024
java	python	0.3929	ajax	jquery	0.6315
analysis	visualization	0.4524	sklearn	tensorflow	0.6858
nodejs	reactjs	0.4909	bagging	random-forest	0.7251
java	jdk	0.5517	mysql	postgresql	0.7997
\mathbf{xml}	json	0.5866	keras	tensorflow	0.8391

RQ1 - Experiment 2A Results

Canada's Capital University

Table 8: Results of Experiment 2A - Expertise Extraction from GitHub Data.

Top 3 Results	Metrics	TDistr	LDA_AVG	LDA_MAX	W2V_AVG	W2V_MAX	Baseline
00	Cosine Sim.	0.6828	0.7377	0.7602	0.7761	0.7680	0.5962
1	Jaccard Sim.	0.0246	0.0218	0.0251	0.0209	0.0144	0.0286
	BLEU Score	0.0277	0.0245	0.0279	0.0212	0.0127	0.0540
69	Cosine Sim.	0.6827	0.7364	0.7598	0.7750	0.7 <mark>6</mark> 72	0.5962
2	Jaccard Sim.	0.0249	0.0256	0.0254	0.0204	0.0138	0.0286
	BLEU Score	0.0281	0.0292	0.0288	0.0208	0.0122	0.0540
	Cosine Sim.	0.6821	0.7362	0.7595	0.7748	0.7671	0.5962
3	Jaccard Sim.	0.0241	0.0244	0.0259	0.0218	0.0131	0.0286
	BLEU Score	0.0271	0.0278	0.0295	0.0222	0.0116	0.0540

Table 5: Example of Cosine Similarity Scores between Term-Pairs.

Term 1	Term 2	Cosine Similarity	Term 1	Term 2	Cosine Similarity
php	python	0.2529	html	javascript	0.6024
java	python	0.3929	ajax	jquery	0.6315
analysis	visualization	0.4524	sklearn	tensorflow	0.6858
nodejs	reactjs	0.4909	bagging	random-forest	0.7251
java	jdk	0.5517	mysql	postgresql	0.7997
xml	json	0.5866	keras	tensorflow	0.8391

RQ1 - Experiment 2B Results

Canada's Capital University

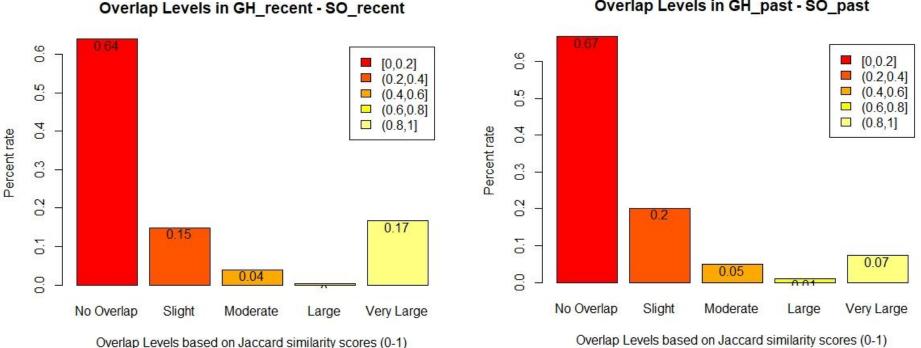
Top 3 Results	Metrics	TDistr	LDA_AVG	LDA_MAX	W2V_AVG	W2V_MAX	Baseline
1	Cosine Sim.	0.5263	0.5361	0.5837	0.5902	0.5117	0.3721
	Jaccard Sim.	0.0099	0.0230	0.0435	0.0295	0.0102	0.0104
	BLEU Score	0.0117	0.0231	0.0822	0.0363	0.0087	0.0199
	Cosine Sim.	0.5080	0.5304	0.5717	0.5821	0.5087	0.3721
2	Jaccard Sim.	0.0223	0.0175	0.0816	0.0196	0.0120	0.0104
	BLEU Score	0.0267	0.0196	0.1471	0.0222	0.0101	0.0199
	Cosine Sim.	0.5036	0.5266	0.5697	0.5698	0.5086	0.3721
3	Jaccard Sim.	0.0111	0.0149	0.0303	0.0180	0.0106	0.0104
	BLEU Score	0.0136	0.0169	0.0579	0.0180	0.0090	0.0199

Table 5: Example of Cosine Similarity Scores between Term-Pairs.

Term 1	Term 2	Cosine Similarity	Term 1	Term 2	Cosine Similarity
php	python	0.2529	html	javascript	0.6024
java	python	0.3929	ajax	jquery	0.6315
analysis	visualization	0.4524	sklearn	tensorflow	0.6858
nodejs	reactjs	0.4909	bagging	random-forest	0.7251
java	jdk	0.5517	mysql	postgresql	0.7997
xml	json	0.5866	keras	tensorflow	0.8391

RQ 2 - Results

Canada's Capital University



Overlap Levels in GH_past - SO_past

Overlap Levels based on Jaccard similarity scores (0-1)

RQ3 - Results

Canada's Capital University

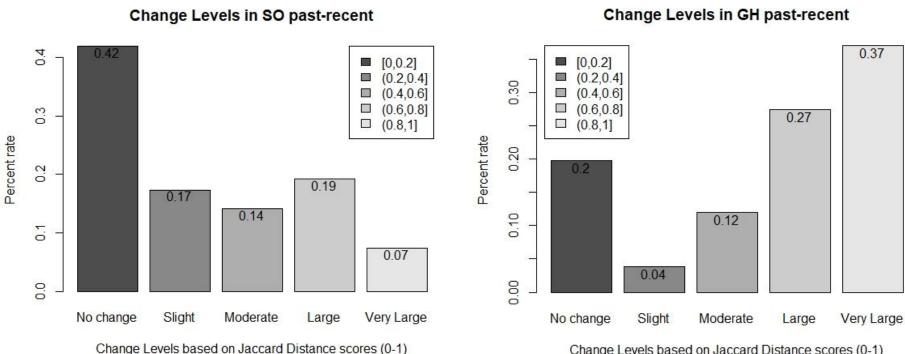
Ranking	Keyword	Frequency	Ranking	Keyword	Frequency
1	library	43,123	16	base	16,798
2	code	37,621	17	implementation	$16,\!670$
3	simple	32,762	18	client	15,833
4	type	30,948	19	test	15,723
5	javascript	30,044	20	http	$15,\!674$
6	project	26,255	21	page	15,423
7	web	25,083	22	game	13,890
8	tool	24,967	23	website	$13,\!255$
9	https	24,738	24	package	12,982
10	file	24,737	25	repository	11,690
11	html	22,333	26	add	11,421
12	github	21,317	27	method	11,421
13	script	20,318	28	line	$11,\!252$
14	source	20,266	29	api	11,144
15	language	19,855	30	datum	10,980

Table 12: Most common words in GH-past and SO-past text corpora.

Ranking	Keyword	Frequency	Ranking	Keyword	Frequency
1	test	56,302	16	heroku	15,764
2	simple	51,226	17	buildpack	15,764
3	library	44,781	18	cli	15,764
4	app	43,750	19	$^{\rm rb}$	15,764
5	api	35,881	20	activerecord	15,764
6	base	26,075	21	rspec	15,764
7	client	25,381	22	active	15,764
8	code	22,052	23	github	15,297
9	file	21,538	24	web	12,890
10	application	19,620	25	add	12,849
11	https	16,764	26	change	12,849
12	ruby	15,764	27	remove	12,849
13	rail	15,764	28	check	12,849
14	ember	15,764	29	make	11,231
15	gem	15,764	30	comment	11,231

RQ4 - Results

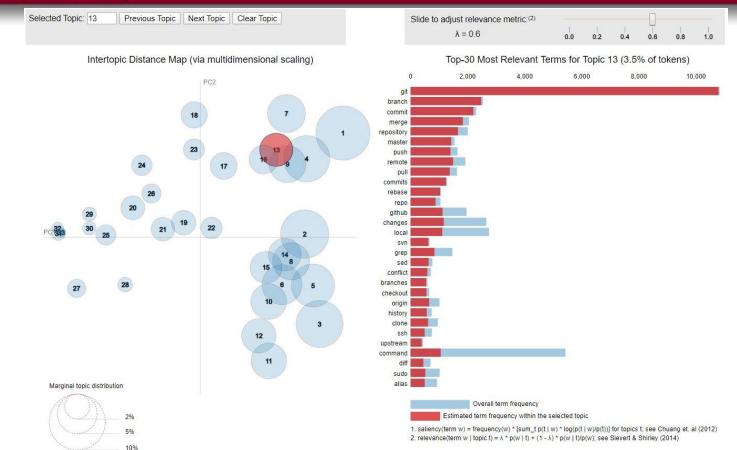
Canada's Capital University



Change Levels based on Jaccard Distance scores (0-1)

Carleton Stack Overflow Topic Modeling Visualization

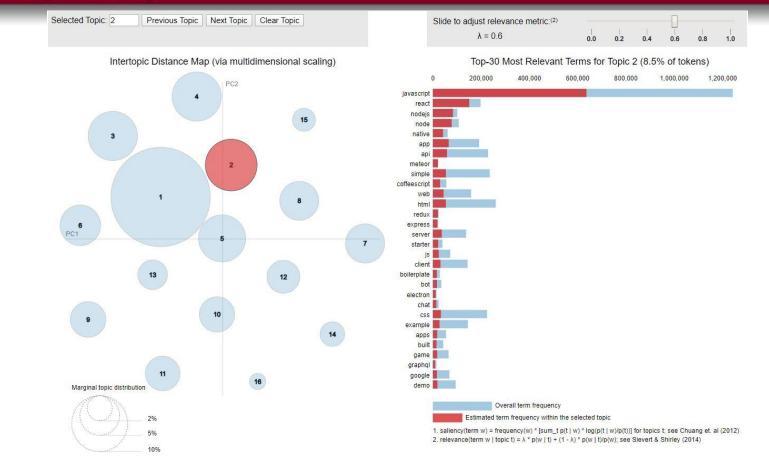
Canada's Capital University



45

Carleton GitHub Topic Modeling Visualization

Canada's Capital University



46

Expertise Study Google Forms

Section 1 of 2

Section 2 of 2

- 2

GH user's expertise - Bin 1

Enter 20 comma-separated words for describing each user's expertise. Your answers needs to come from evaluating a user's full activity (i.e. every publicly available data that you can see and click-through) on Github.

Sample answer for a fictional user:

"pytorch, CNN, RNN, auto-encoders, Keras, git, tensorflow, python, java, C#, web_dev, machine_learning, random_forest, SVM, nlp, Java_streams, distributed_computing, parallel_computing, R, statistics, visualization"

What is your name ? *

Short answer text

GH - user 1 - https://github.com/brunnurs/ *

Long answer text

GH - user 2 - https://github.com/whiteinge/ *

Long answer text

GH - user 3 - https://github.com/Gabriel439/ *

Long answer text

SO user's expertise - Bin 2

1

Enter exactly 20 comma-separated words for describing each user's expertise. Your answers needs to come from evaluating a user's full activity (i.e. every publicly available data that you can see and click-through) on Stack Overflow.

Sample answer for a fictional user:

"pytorch, CNN, RNN, auto-encoders, Keras, git, tensorflow, python, java, C#, web_dev, machine_learning, random_forest, SVM, nlp, Java_streams, distributed_computing, parallel_computing, R, statistics, visualization"

SO - user 1 - https://stackoverflow.com/users/298171/fish2000/ *

Long answer text

SO - user 2 - https://stackoverflow.com/users/80410/Mark Probst/ *

Long answer text

SO - user 3 - https://stackoverflow.com/users/20520/Diomidis Spinellis/ *

Long answer text

SO - user 4 - https://stackoverflow.com/users/541136/Aaron Hall/ *

Long answer text

GH - user 4 - https://github.com/davideicardi/ *

47

Model Parameters - Experiment 1

Canada's Capital University

Table 18:	Parameters	of Models	from	Experiment	1A -	Expertise	Extraction	from
GitHub D	ata							

Top 3 Results	Parameters	TDistr	LDA_AVG	LDA_MAX	W2V_AVG	W2V_MAX
1	Topic Number	11	10	11	16	11
1	Beta Value	0.01	0.005	0.05	0.05	0.05
0	Topic Number	11	10	11	16	11
2	Beta Value	0.005	0.001	0.001	0.001	0.001
9	Topic Number	11	10	11	16	11
3	Beta Value	0.05	0.0 <mark>1</mark>	0.005	0.005	0.005

Table 19: Parameters of Models from Experiment 1B - Expertise Extraction from Stack Overflow Data

Top 3 Results	Parameter	TDistr	LDA_AVG	LDA_MAX	W2V_AVG	W2V_MAX
1	Topic Number	40	33	33	31	48
	Beta Value	0.01	1	1	0.1	1
2	Topic Number	29	27	27	48	27
2	Beta Value	0.1	0.5	0.5	1	1
3	Topic Number	45	16	27	14	31
э	Beta Value	0.1	0.5	1	1	1

Model Parameters - Experiment 2

Canada's Capital University

Table 20: Parameters of Models from Experiment 2A - Expertise Extraction from GitHub Data

Top 3 Results	Parameters	TDistr	LDA_AVG	LDA_MAX	W2V_AVG	W2V_MAX
1	Topic Number	11	21	16	16	16
1	Beta Value	0.005	0.05	0.05	0.01	0.05
0	Topic Number	11	11	10	16	16
2	Beta Value	0.01	0.0 <mark>1</mark>	0.001	0.005	0.01
2	Topic Number	11	11	10	16	16
3	Beta Value	0.001	0.001	0.005	0.05	0.001

Table 21: Parameters of Models from Experiment 2B - Expertise Extraction from Stack Overflow Data

Top 3 Results	Parameter	TDistr	LDA_AVG	LDA_MAX	W2V_AVG	W2V_MAX
1	Topic Number	40	13	33	14	30
	Beta Value	0.01	0.1	1	1.0	0.001
2	Topic Number	13	36	27	32	30
	Beta Value	0.1	1.0	0.5	0.1	0.1
3	Topic Number	45	27	36	16	30
	Beta Value	0.1	0.01	1	0.5	0.005